Synthesis of Functionalized Compounds Containing a Difluoromethylene Moiety

Jian Chen and Chang-Ming Hu*

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China

By a two-step sequence, functionalized CF_2 -containing compounds have been readily synthesized from CF_2Br_2 . In the presence of $CrCl_3/Fe$, CF_2Br_2 added to both electron-deficient and electron-rich alkenes to give CF_2Br -containing compounds. Promoted by Co^{ttt}/Zn , these adducts reacted further with a further molecule of alkene to give various CF_2 -containing compounds in good yields.

Since pharmaceuticals and agrochemicals containing a CF₂ group often show unique biological activities,¹ there is much interest in the introduction of this group into compounds. It has been reported that the CF₂ group has a steric profile similar to that of the CH₂ group but since it has both a very different polarity and reactivity,¹° it could be regarded as an isopolar and isosteric replacement of oxygen.² Compounds containing a CF₂ group are usually synthesized through the general transformation C=O \rightarrow CF₂ brought about by (diethylamino)sulfur trifluoride $(DAST)^{3-4}$ and other reagents.⁵⁻⁶ Such methods, however, although quite popular, necessitate use of both expensive reagents and special equipment. Although CF₂Br₂ and Zn powder could, in certain cases, bring about the conversion C=O \rightarrow CF₂, via a :CF₂ intermediate, product yields were low.⁷ Lack of a general synthesis for such CF₂-bearing functionalized compounds has, therefore, hampered developments in this area. Whilst investigating the synthetic utility of CF_2Br_2 , we found that the $CrCl_3$ /Fe redox system is an efficient catalyst for the addition of CF₂Br₂ to electron-deficient alkenes to give CF₂Br-containing products.⁸ Since such products contain a terminal CF₂Br group we surmised that the remaining bromine atom could, possibly, react with a further molecule of alkene. Experiments showed that such a bromine atom could be activated by cobaloxime/Zn, but not CrCl₃/Fe. Here, we describe a two-step strategy to synthesize CF₂-containing compounds.

Results and Discussion

In the presence of $CrCl_3$ - $6H_2O$ as catalyst (30 mol%) and Fe powder (1.5 equiv.), CF_2Br_2 1 readily reacted with electrondeficient alkenes 2 to give CF_2Br -containing products 3 in good to excellent yields. Under these conditions, no debromination or hydrodebromination products : CF_2 or CF_2BrH , respectively) were detected (Scheme 1). Ethanol and tetrahydrofuran proving to be the most suitable solvents although most additions were carried out in the former. Iron powder alone was insufficiently active to initiate such additions. Table 1 summarizes the reaction conditions and the yields.

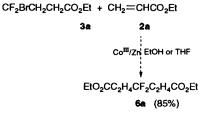
Subsequently, it was found that the above described redox system also promoted the addition of $CF_2Br_2 1$ to electron-rich alkenes (see Scheme 2). Such reactions were more rapid (*ca.* 10 h) than those with electron-deficient alkenes and gave a 1:1 adduct; this contrasts with the reactions of electron-deficient alkenes, where the bromine atom in the hydrocarbon part was reduced (Schemes 1 and 2).

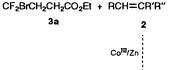
Since the bromine atom remaining in compounds 3 and 5 allowed the possibility of further chemical transformation to give CF_2 -containing compounds, addition with a further

Table 1 The addition of CF_2Br_2 1 to electron-deficient alkenes 2 in ethanol with $CrCl_3/Fe$

Entry	Alkene	Temp. (°C)	Time (h)	Product	Yield (%)"
1	2a	60	20	3a	72
2	2a	60	20	3a	0 *
3	2Ь	60	20	3b	63
4	2c	60	24	3c	80
5	2d	60	28	3d	43
6	2e	65	20	3e	64 °
7	2f	70	20	3f	72
8	2g	60	20	3g	60
9	2h	60	18	3h	62
10	2i	75	20	3i	18

^a Isolated yields. ^b Iron powder alone used. ^c Tetrahydrofuran was used as solvent.


CF ₂ Br ₂ + RCH=CR'R" BrCF ₂ CHRCHR'R"							
1	2			3			
2	R	R'	R″	3			
a	н	Н	CO ₂ Et	a			
b	Н	Н	CO ₂ Me	b			
с	Н	Me	CO ₂ Et	с			
d	Me	Н	CO ₂ Et	d			
е	Н	Н	CO ₂ H	e			
f	Н	Н	CONH ₂	f			
g	Н	Н	Ac	g			
ĥ	Н	Н	CN	ĥ			
i	-(CH ₂) ₃ CO-	Н	i			
Scheme 1							
CF ₂ Br ₂ + CH ₂ =CHC ₄ H ₉ CrCl ₂ Fe EtOH, 60 ℃ BrCF ₂ CH ₂ CHBrC ₄ H ₉							
1	4			5	(96%)		
Scheme 2							


molecule of alkene was attempted. The bromine atom in the CF_2Br group being relatively inert because of the presence of the neighbouring α -CH₂ group. Initiators such as $CrCl_3/Fe$, Cp_2TiCl_2/Fe ,⁹ Na₂S₂O₄/NaHCO₃,¹⁰ CuCl/ethanolamine¹¹ and palladium¹² etc., failed to initiate further addition.

Nevertheless, since it was known that cobaloxime/Zn efficiently promoted the addition both of per(poly)fluoroalkyl iodides or bromides to electron-deficient alkenes¹³ and of $CF_2BrP(O)(EtO)_2$ to various alkenes,¹⁴ it was used to promote the addition of ethyl 4-bromo-4,4-difluorobutyrate **3a** and ethyl acrylate **2a** to give the 1:1 hydrodebromination adduct **6a** (see Scheme 3). Neither the reduced product $HCF_2C_2H_4CO_2Et$ nor the zinc reagent $BrZnCF_2C_2H_4CO_2Et$ were detected as by-products. Although either ethanol or THF could be used as solvent, most of the additions were carried out in the former at room temperature.

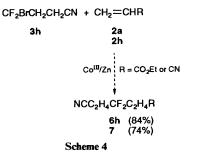
Although ammonium chloride, bromide, acetate or formate accelerated the addition, 10-15% of HCF₂CH₂CO₂Et as a by-product was detected (¹⁹F NMR).

Ethyl 4-bromo-4,4-difluorobutyrate **3a** was allowed to react with various electron-deficient and electron-rich alkenes (Scheme 3).

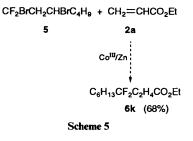
EtO2CC2H4CF2CH(R)CHR'R"

6 Yield (%)^a

	Compd.						
Entry	2	R	R'	R″	6	Yield (%)"	
1	a	н	Н	CO ₂ Et	a	85	
2	b	Н	Н	CO_2Me	b	70 <i>°</i>	
3	c	Н	Me	CO ₂ Et	с	72	
4	d	Me	Н	CO_2Et	d	28	
5	f	Н	Н	CONH ₂	f	52	
6	h	Н	Н	CN	h	82	
7	i	$-(CH_2)$	₃ CO-	н	i	48	
8	j	Н	Н	CH ₂ Cl	j	77	
9	k	Н	Н	Bu	k	80	
10	1	Н	Н	C ₂ H ₄ COMe	1	72	
11	m	Н	Н	OEt	m	74	


" Isolated yields. " THF was used as sovent. " The product was ethyl 4,4difluorohept-6-enoate.

Scheme 3


Tetrahydrofuran was used as solvent with methyl acrylate **2b**, to avoid partial exchange of the methoxy group to a ethoxy group which was possible in ethanol.

As a result mainly of steric hindrance, ethyl crotonate **2d** gave a lower yield (entries 3 and 4 in Scheme 3).

4-Bromo-4,4-difluorobutyronitrile **3h** was also similarly found to add to ethyl acrylate **2a** and acrylonitrile **2h** to give **6h** and 7 in 84 and 74% yields, respectively (Scheme 4)

Finally, 1,3-dibromo-1,1-diffuoroheptane 5 was allowed to react with 2a. In this case, the terminal CF₂ added to ethyl

acrylate, while the bromine atom in CHBr was reduced (Scheme 5).

In summary, various multi-functionalized CF_2 -containing compounds have been readily synthesized from CF_2Br_2 in a two-step strategy.

Experimental

All b.p.s are uncorrected. IR spectra were recorded on an IR-440 Shimadzu spectrometer using a thin film. ¹⁹F NMR spectra were recorded on a Varian-360L (56.4 MHz) spectrometer in CDCl₃ or $[^{2}H_{6}]$ acetone using CF₃CO₂H as external standard. Chemical shifts in ppm were positive for upfield shifts. ¹H NMR spectra were recorded on an XL-200 (200 MHz) instrument or a Bruker machine (300 MHz) in CDCl₃ or $[^{2}H_{6}]$ acetone. MS spectra were obtained on a Finnigan GC-MS-4021 or Finnigan-8430 spectrometer.

Addition of CF_2Br_2 to Electron-deficient Alkenes initiated by $CrCl_3/Fe.$ —Typical procedure. A mixture of $CrCl_3\cdot 6H_2O$ (0.53g, 2 mmol), iron powder (0.84 g, 15 mmol), CF_2Br_2 (2.1 g, 10 mmol) and ethyl acrylate **2a** (1.2 g, 12 mmol) in ethanol (15 cm³) was stirred at the appropriate temperature for the stated time (see Table 1); the reaction was monitored by ¹⁹F NMR spectrometry. At completion of the reaction, the mixture was poured into water (30 cm³) and filtered. The filtrate was extracted with diethyl ether (3 × 20 cm³) and the combined extracts were successively washed with saturated aqueous NaHSO₃, water and brine, dried (Na₂SO₄) and evaporated. The residue was either distilled *in vacuo* or column chromatographed with light petroleum (b.p. 60–90 °C)–ethyl acetate as eluent (95:5, v/v) to give the pure products.

Ethyl 4-*bromo*-4,4-*difluorobutyrate* **3a**.⁸ Colourless oil; b.p. 91–92 °C/40 mmHg; $\delta_{\rm F}$ – 32 (s, CF₂Br) ppm; $\delta_{\rm H}$ 4.15 (q, ³ $J_{\rm HH}$ 7, 2 H, OCH₂), 3.2–2.2 (m, 4 H, CH₂CH₂) and 1.25 (t, ³ $J_{\rm HH}$ 7, 3 H, OEt).

Methyl 4-*bromo*-4,4-*difluorobutyrate* **3b**. Colourless oil; b.p. 65–67 °C/20 mmHg, $\delta_{\rm F}$ – 32 (s, CF₂Br); $\delta_{\rm H}$ 3.8 (s, 3 H, OCH₃), 3.2–2.2 (m, 4 H, CH₂CH₂), $\nu_{\rm max}/{\rm cm}^{-1}$ 1740s (C=O), 1220, 1180s (C=F), 1060s; m/z (%) 217 (M⁺, 3.18), 138 (M⁺ – Br, 9.81), 137 (M⁺ – HBr, 100), 89 (M⁺ – CF₂Br, 45.9) (Found: C, 27.5; H, 3.3. Calc. for C₅H₇BrF₂O₂: C, 27.65; H, 3.22%).

Ethyl 4-*bromo*-4,4-*difluoro*-2-*methylbutyrate* 3c. Colourless oil; b.p. 72–74 °C/15 mmHg; $\delta_{\rm F}$ – 34 (s, CF₂Br); $\delta_{\rm H}$ 4.4 (q, 2 H, ³J_{HH} 7, OEt), 3.6–2.2 (m, 3 H, CH₂CH) and 1.00 (t, ³J_{HH} 7, 6 H, OEt + CH₃); $\nu_{\rm max}/{\rm cm}^{-1}$ 1740s (C=O), 1220, 1180s (C–F) and 1020s; *m*/*z* (%) 245 (M⁺, 2.56, ⁷⁹Br), 246 (M⁺, 195, ⁸¹Br), 200 (49.3), 137 (100) (Found: C, 34.2; H, 4.6; Br, 32.9; F, 15.6. Calc. for C₇H₁₁BrF₂O₂: C, 34.29; H, 4.49; Br, 32.65; F, 15.51%).

Ethyl 4-bromo-4,4-difluoro-3-methylbutyrate **3d**. Colourless oil; b.p. 71–73 °C/15 mmHg; $\delta_{\rm F}$ – 33 (m, CF₂Br); $\delta_{\rm H}$ 4.3 (q, 2 H, ³J_{HH} 7, OEt), 2.8–1.5 (m, 6 H, CH₂CH + CH₃) and 1.38 (t, ³J_{HH} 7, 3 H, OEt); $\nu_{\rm max}$ /cm⁻¹ 1735s (C=O), 1200; 1160s (C–F), 1020s; *m/z* (%) 245 (M⁺ + 1, 5.68, ⁷⁹Br), 247 (M⁺ + 1, 4.72, ⁸¹Br) and 137 (100) (Found: C, 34.2; H, 4.6; Br, 32.9; F, 15.3. Calc. for C₇H₁₁BrF₂O₂: C, 34.3; H, 4.5; Br, 32.65; F, 15.5%).

4-Bromo-4,4-difluorobutyric acid **3e**. Colourless oil; b.p. 90– 92 °C/2 mmHg; $\delta_{\rm F}$ – 31.6 (s, CF₂Br); $\delta_{\rm H}$ 10.8 (s br, 1 H, CO₂H) and 3.2–2.8 (m, 4 H, CH₂CH₂); $\nu_{\rm max}/{\rm cm}^{-1}$ 3400vs (OH), 1740s (C=O), 1180, 1110s (C–F); m/z (%) 2303 (M⁺, 0.19, ⁷⁹Br), 185 (M⁺ – H₂O, 4.5), 123 (M⁺ – Br, 5.6), 103 (100) and 77 (46) (Found: C, 24.2; H, 2.7; Br, 39.2; F, 19.0. Calc. for C₄H₅BrF₂O₂: C, 23.65; H, 2.46; Br, 39.41; F, 18.92%).

4-Bromo-4,4-difluorobutyramide **3f**. $\delta_{\rm F}$ -33 (s, CF₂Br); $\delta_{\rm H}$ 10 (br, 2 H, NH₂) and 2.5 (m, 4 H, CH₂CH₂); $\nu_{\rm max}/\rm{cm^{-1}}$ 3450, 3300vs (NH), 1780s (C=O), 1220, 1180s (C–F); m/z (%) 201 (M⁺, 1.75, ⁷⁹Br), 203 (M⁺, 1.74, ⁸¹Br), 122 (M⁺ – Br, 100) and 77 (46) (Found: C, 23.9; H, 2.7; Br, 40.7; F, 19.3; N, 6.8. Calc. for C₄H₆BrF₂NO: C, 23.76; H, 2.97; Br, 39.60; F, 18.81; N, 6.93%).

1-Bromo-1,1-difluoropentan-4-one **3g**. Colourless oil (slowly turned from colourless to deep brown at room temperature); b.p. 75–77 °C/40 mmHg; $\delta_{\rm F}$ – 34 (s, CF₂Br); $\delta_{\rm H}$ 2.5 (m, 4 H, CH₂CH₂) and 2.1 (s, 3 H, CH₃); $\nu_{\rm max}$ /cm⁻¹ 1720s (C=O) and 1220s (C–F); m/z (%) 201 (M⁺ + 1, 2.13, ⁷⁹Br), 203 (M⁺ + 1, 2.08, ⁸¹Br), 121 (M⁺ – Br, 29) and 44 (100) (Found: C, 29.4; H, 3.3; Br, 39.55; F, 18.1. Calc. for C₅H₇BrF₂O: C, 29.85; H, 3.48; Br, 39.80; F, 18.91%).

4-Bromo-4,4-difluorobutyronitrile **3h**. Colourless oil; b.p. 85– 87 °C/40 mmHg; $\delta_{\rm F}$ – 31.5 (s, CF₂Br); $\delta_{\rm H}$ 3.6–2.8 (m, C₂H₄); $\nu_{\rm max}$ /cm⁻¹ 2200w (CN), 1220, 1180s (C–F); *m/z* (%) 183 (M⁺, 4.65, ⁷⁹Br), 185 (M⁺, 4.87, ⁸¹Br), 104 (M⁺ – Br, 100) and 54 (M⁺ – CF₂Br, 67) (Found: C, 26.4; H, 2.3; Br, 43.8; F, 21.0; N, 7.6. Calc. for C₄H₄BrF₂N: C, 26.09; H, 2.17; Br, 43.48; F, 20.65; N, 7.61%).

3-Bromodifluoromethylcyclohexanone **3i**. Light yellow oil; b.p. 67–68 °C/2 mmHg; $\delta_{\rm F}$ – 28 (s, CF₂Br); $\delta_{\rm H}$ 3.8–1.5 (m, cyc-H); $\nu_{\rm max}$ /cm⁻¹ 1730s (C=O), 1200s (C–F); m/z (%) 227 (M⁺ + 1, 27.81, ⁷⁹Br), 229 (M⁺ + 1, 25.01, ⁸¹Br), 147 (M⁺ – Br, 100) and 97 (M⁺ – CF₂Br – 33); [Found: (HRMS): m/z 225.9812 (⁷⁹Br). Calc. for C₇H₉BrF₂O: 225.9802 (⁷⁹Br)].

1,1-Dibromo-1,1-difluoroheptane **5**. Colourless oil; b.p. 95– 98 °C/45 mmHg (lit.,¹⁵ b.p. 78–80 °C/25 mmHg); $\delta_{\rm F}$ – 34.5 (s, CF₂Br); $\delta_{\rm H}$ 4.3 (m, 1 H, CHBr), 3.05 (m, 2 H, CH₂CF₂) and 2.2– 1.0 (m, 9 H, C₄H₉).

Addition of $BrCF_2C_2H_4R$ to Alkenes initiated by $Co^{III}/Zn.$ General procedure. A mixture of bromo(pyridine) cobaloxime(III) (0.1 mmol),¹³ zinc powder (0.65 g, 10 mmol) and ethanol (20 cm³) was vigorously stirred at room temperature under N₂ for *ca.* 30 min during which time, the colour of the suspension changed from brown to light green; further starting material (10 mmol) and the alkene 2 (12 mmol) were then added to it. After the mixture had been stirred at room temperature for *ca.* 1 day, the reaction being monitored by ¹⁹F NMR spectroscopy, workup as above gave the corresponding products.

Diethyl 4,4-difluoropimelate **6a**. Colourless oil; b.p. 110– 112 °C/3 mmHg; $\delta_{\rm F}$ 24 (s, CF₂); $\delta_{\rm H}$ 4.16 (q, ${}^{3}J_{\rm HH}$ 7, 4 H, 2 × OEt), 2.5–2.0 (m, 8 H, 2 × C₂H₄) and 1.36 (t, ${}^{3}J_{\rm HH}$ 7, 6 H, 2 × Me); $\nu_{\rm max}/{\rm cm}^{-1}$ 1740s (C=O), 1260, 1200s (C–F); m/z (%) 253 (M⁺ + 1, 49.85), 207 (M⁺ – OEt, 63.5), 233 (82.79) and 159 (100) (Found: C, 52.4; H, 7.3; F, 15.2. Calc. for C₁₁H₁₈-F₂O₄: C, 52.38; H, 7.14; F, 15.08%).

Ethyl methyl 4,4-*difluoropimelate* **6b**. Colourless oil; b.p. 120 °C/4 mmHg; $\delta_{\rm F}$ 24 (s, CF₂); $\delta_{\rm H}$ 4.16 (q, ${}^{3}J_{\rm HH}$ 7, 2 H, OEt), 3.4 (s, 3 H, CH₃), 2.5–2.0 (m, 8 H, 2 × C₂H₄) and 1.36 (t, ${}^{3}J_{\rm HH}$ 7, 3 H, CH₃); $\nu_{\rm max}/{\rm cm}^{-1}$ 1760, 1740 (s, C=O), 1260, 1200 (s, C–F); m/z (%) 239 (M⁺ + 1, 100) (Found: C, 50.4; H, 6.7; F, 15.4. Calc. for C₁₀H₁₆F₂O₄: C, 50.42; H, 6.72; F, 15.79%).

Diethyl 4,4-difluoro-2-methylpimelate 6c. Colourless oil; b.p. 107–108 °C/1 mmHg; $\delta_{\rm F}$ 24 (s, CF₂); $\delta_{\rm H}$ 4.16 (q, ³J_{HH} 7, 4 H, 2 × OEt), 2.8–1.6 (m, 7 H, C₂H₄ + CH₂CH), 1.36 (t, ³J_{HH} 7, 6 H, 2 × CH₃) and 1.11 (d, ³J_{HH} = 2, 3 H, CH₃); $\nu_{\rm max}/{\rm cm}^{-1}$ 1740s

(C=O) and 1200s (C-F); m/z (%) 267 (M⁺ + 1, 31.69), 247 (100), 221 (80.52), 201 (17.08) and 85 (89) [Found (HRMS): 266.1330. Calc. for $C_{12}H_{20}F_2O_4$: 266.1324].

Diethyl 4,4-difluoro-3-methylpimelate **6d**. Colourless oil; b.p. 103–105 °C/1 mmHg; δ_F 29 (AB, ${}^{3}J_{AB}$ 240, CF₂); δ_H 4.26 (q, ${}^{3}J_{HH}$ 7, 4 H, 2 × OEt), 2.9–1.8 (m, 7 H, C₂H₄ + CH₂CH) and 1.36 (t, ${}^{3}J_{HH}$ 7, 9 H, 3 × CH₃); ν_{max}/cm^{-1} 1740, 1735s (C=O), 1260, 1200s (C–F); m/z (%) 267 (M⁺ + 1, 68.56), 247 (100), 221 (32.22) and 201 (17.5) [Found (HRMS): 266.1322. Calc. for C₁₂H₂₀F₂O₄: 266.1324].

6-*Ethoxycarbonyl*-4,4-*difluorohexanoamide* **6f**. δ_F 24 (s, CF₂); δ_H 4.2 (q, ${}^3J_{HH}$ 7, 2 H, OEt), 2.9 (s, 2 H, NH₂), 2.8–1.8 (m, 8 H, 2 × C₂H₄) and 1.36 (t, ${}^3J_{HH}$ 7, 3 H, CH₃); ν_{max}/cm^{-1} 3400, 3200s (NH₂), 1740, 1640s (C=O), 1190s (C–F); *m/z* (%) 224 (M⁺ + 1, 100), 204 (M⁺ – HF, 58.47), 178 (83.05) and 160 (22.46) (Found: C, 48.15; H, 7.1; N, 2.9. Calc. for C₉H₁₅F₂NO₃: C, 48.43; H, 6.73; N, 6.28%); [Found (HRMS): 223.1042. Calc. for C₉H₁₅F₂NO₃: 223.1015].

Ethyl 6-*cyano*-4,4-*difluorohexanoate* **6h**. Colourless oil; b.p. 133–135 °C/1 mmHg; $\delta_{\rm F}$ 25.5 (s, CF₂); $\delta_{\rm H}$ 4.12 (q, ${}^{3}J_{\rm HH}$ 7, 2 H, OEt), 2.8–1.9 (m, 8 H, 2 × C₂H₄) and 1.36 (t, ${}^{3}J_{\rm HH}$ 7, 3 H, CH₃); $\nu_{\rm max}/{\rm cm}^{-1}$ 2200w (CN), 1740s (C=O), 1200s (C–F); *m/z* (%) 206 (M⁺ + 1, 100), 160 (M⁺ – OEt, 58), 140 (18.50) and 112 (24) (Found: C, 52.0; H, 6.65; N, 6.8. Calc. for C₉H₁₃F₂NO₂: C, 52.68; H, 6.34; N, 6.83%); [Found (HRMS): 205.0899. Calc. for C₉H₁₃F₂NO₂: 205.0910].

Ethyl 4,4-*difluoro*-4-(3'-*oxocyclohexyl*)*butyrate* 6i. Colourless oil; b.p. 128–130 °C/1 mmHg; $\delta_{\rm F}$ 30 (s, CF₂); $\delta_{\rm H}$ 4.16 (q, ${}^{3}J_{\rm HH}$ 7, 2 H, OEt), 2.8–1.6 (m, 13 H) and 1.36 (t, ${}^{3}J_{\rm HH}$ 7, 3 H, CH₃); $\nu_{\rm max}/{\rm cm}^{-1}$ 1740, 1720s (C=O), 1200s (C–F); *m/z* (%) 249 (M⁺ + 1, 100), 229 (M⁺ – F, 67.20), 228 (M⁺ – HF, 64.02), 209 (35.84) and 180 (41.23) (Found: C, 58.25; H, 7.2; F, 15.8. Calc. for C₁₂H₁₈F₂O₃: C, 58.06; H, 7.26; F, 15.32%); [Found (HRMS): 228.1130 (M⁺ – HF). Calc. for (M⁺ – HF): 228.1157].

Ethyl $\overline{4}$,4-*difluorohept-6-enoate* **6j**. Colourless oil; b.p. 85–87 °C/40 mmHg; $\delta_{\rm F}$ 24 (s, CF₂); $\delta_{\rm H}$ 5.4 (m, 1 H, CH=CH₂), 4.8 (m, 2 H, CH=CH₂), 4.0; $\nu_{\rm max}$ /cm⁻¹ 1740s (C=O), 1640m (C=C) and 1200s (C–F); *m*/*z* (%) 193 (M⁺ + 1, 26.43), 173 (M⁺ - F, 100), 147 (100), 127 (11.83), 85 (29.9) and 131 (38.48) [Found (HRMS): 192.1002. Calc. for C₉H₁₄F₂O₂: 192.0956].

Ethyl 4,4-*difluorodecanoate* 6k. Colourless oil; b.p. 103–105 °C/3 mmHg; δ_F 24 (s, CF₂); δ_H 4.16 (q, ³J_{HH} 7, 2 H, OEt), 2.8–1.6 (m, 13 H) and 1.36 (t, ³J_{HH} 7, 3 H, CH₃); ν_{max} /cm⁻¹ 1740, 1720s (C=O), 1200s (C–F); *m/z* (%) 273 (M⁺ + 1, 1.08), 217 (M⁺ – HF, 39.37), 189 (M⁺ – OEt, 23) and 43 (100) (Found: C, 61.1; H, 9.0: F, 15.42. Calc. for C₁₂H₂₂F₂O₂: C, 61.1; H, 9.37; F, 16.10%).

Ethyl 4,4-*difluoro-9-oxodecanoate* **6**I. Colourless oil; b.p. 125–127 °C/1 mmHg; $\delta_{\rm F}$ 24 (s, CF₂); $\delta_{\rm H}$ 4.16 (q, ${}^{3}J_{\rm HH}$ 7, 2 H, OEt), 2.6–1.3 (m, 12 H), 2.0 (s, 3 H, Ac) and 1.36 (t, ${}^{3}J_{\rm HH}$ 7, 3 H, CH₃); $\nu_{\rm max}/{\rm cm}^{-1}$ 1740, 1720s (C=O), 1180, 1160s (C–F); *m/z* (%) 251 (M⁺ + 1, 5.62), 231 (31.11), 207 (M⁺ – Ac, 1.49), 187 (14.97), 173 (23.77) and 43 (100) (Found: F, 15.2. Calc. for C₁₂H₂₀F₂O₃: F, 15.20%).

Ethyl 4,4-*difluoro*-7-*oxanonanoate* 6m. Colourless oil; b.p. 108–110 °C/1 mmHg; $\delta_{\rm F}$ 24 (s, CF₂); $\delta_{\rm H}$ 4.16 (q, ${}^{3}J_{\rm HH}$ 7, 2 H, OEt), 3.8 (m, 4 H, 2 × OCH₂), 2.8–1.7 (m, 6 H) and 1.36 (t, ${}^{3}J_{\rm HH}$ 7, 6 H, 2 × CH₃); $\nu_{\rm max}/{\rm cm}^{-1}$ 1740s (C=O), 1260, 1200s (C–F); *m/z* (%) 225 (M⁺ + 1, 35.86), 205 (M⁺ – HF, 100), 179 (M⁺ – OEt, 38.95) and 159 (32.470), 59 (75) [Found: 14.25. (HRMS): 224.1219. Found: 224.1149. Calc. for C₁₀H₁₈F₂O₃: F, 14.9%].

1,5-*Dicyano*-3,3-*difluoropentane* 7. δ_F 21 (s, CF₂); δ_H 2.6–1.6 (m, 2 × C₂H₄); ν_{max} /cm⁻¹ 2230w (CN) 1200s (C–F); *m/z* (%) 159 (M⁺ + 1, 56.26), 139 (5.13), 55 (100) and 54 (89) [Found (HRMS): 159.0751 (M⁺ + 1). Calc. for C₇H₈F₂N₂: 159.0746 (M⁺ + 1)].

1114

Acknowledgements

We are grateful for support of this research from the National Natural Science Foundation of China.

References

- 1 (a) R. Filler and T. Kobayashi, Biomedical Aspects of Fluorine Chemistry, Kondansha, 1982; (b) R. Filler, Organofluorine Chemistry and Its Industrial Applications, ed. R. E. Banks, Ellis Horwood, Chichester, 1979; (c) M. Schlosser, Tetrahedron, 1987, 34, 3; (d) J. Fried, E. A. Hallinan and M. J. Szwedo Jr., J. Am. Chem. Soc., 1984, 106, 3871; (e) F. Tellier and R. Sanvetre, Tetrahedron Lett., 1992, 33, 3643.
- 2 K. E. Stremler and C. D. Poulter, J. Am. Chem. Soc., 1987, 109, 5542.
- 3 W. H. Middleton, J. Org. Chem., 1975, 40, 574.
- 4 G. A. Bosewell, W. C. Ripka, R. M. Schribner and C. M. Tullock, Org. React., 1974, 21, 1.
- 5 G. A. Olah, M. Nojima and I. Kerekes, J. Am. Chem. Soc., 1974, 96, 925.

- 6 F. Mathey and J. Bensoam, *Tetrahedron*, 1975, **31**, 391. 7 C.-M. Hu, F.-L. Qing and C.-X. Shen, J. Chem. Soc., Perkin Trans. 1,
- 1993, 335 and references cited therein.
- 8 C.-M. Hu and J. Chen, J. Chem. Soc. Chem. Commun., 1993, 72.
- 9 C.-M. Hu and Y.-L. Qiu, J. Fluorine Chem., 1992, 55, 109. 10 W.-Y. Huang, W. Wang and B.-N. Huang, Acta Chimica Sinica, 1985, 43, 409.
- 11 D. J. Burton and L. J. Kehoe, J. Org. Chem., 1970, 35, 1339.
- 12 Q.-Y. Chen, Z.-Y. Yang, C.-X. Zhao and Z.-M. Qiu, J. Chem. Soc., Perkin Trans. 1, 1988, 563.
 13 C.-M. Hu and Y.-L. Qiu, J. Org. Chem., 1992, 57, 3339.
- 14 C.-M. Hu and J. Chen, J. Chem. Soc., Perkin Trans 1, 1993, 327
- 15 W.-Y. Huang and H.-Z. Zhang, Chinese J. Chem., 1992, 10, 274.

Paper 3/06758K Received 11th November 1993 Accepted 25th November 1993

[©] Copyright 1994 by the Royal Society of Chemistry